Texas Holdem Poker Full House
Introduction
- Texas Holdem Poker Full House Games
- Texas Holdem Poker Full House Poker
- Texas Hold'em Full House Probability
- Texas Holdem Poker Sites
A Full House is any three cards of the same number or face value, plus any other two cards of the same number or face value. An example of a full house is, but is a full house as well. I'm creating a console texas hold'em poker. I'm already done making this game, everything works as supposed, expect for a full house for which I became undecided for a best way to write a code. This is how I present cards: 'D5', 'S2', 'SA'. The Full House is third on the list of poker hand rankings.It is made up of 3 same-ranked cards paired with 2 same-ranked cards. However, it's not as simple to figure out what a Full House means just from its name.
This page examines the probabilities of each final hand of an arbitrary player, referred to as player two, given the poker value of the hand of the other player, referred to as player one. Combinations shown are out of a possible combin(52,5)×combin(47,2)×combin(45,2) = 2,781,381,002,400. The primary reason for this page was to assist with bad beat probabilities in a two-player game, for example the Bad Beat Bonus in Ultimate Texas Hold 'Em.
For example, if you wish to know the probability of a particular player getting a full house and losing to a four of a kind, we can see from table 7 that there are 966,835,584 such combinations. The same table shows us that given that player one has a full house, the probability of losing to a four of a kind is 0.013390. To get the probability before any cards are dealt, divide 966,835,584 by the total possible combinations of 2,781,381,002,400, which yields 0.0002403.
Table 1 shows the number of combinations for each hand of a second player, given that the first player has less than a pair.
Table 1 — First Player has Less than Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 164,934,908,760 | 0.340569 |
Pair | 228,994,769,160 | 0.472845 |
Two pair | 43,652,558,880 | 0.090137 |
Three of a kind | 7,303,757,580 | 0.015081 |
Straight | 26,248,866,180 | 0.054201 |
Flush | 13,060,678,788 | 0.026969 |
Full house | - | 0.000000 |
Four of a kind | - | 0.000000 |
Straight flush | 85,751,460 | 0.000177 |
Royal flush | 10,532,592 | 0.000022 |
Total | 484,291,823,400 | 1.000000 |
Table 2 shows the number of combinations for each hand of a second player, given that the first player has a pair.
Table 2 — First Player has a Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 228,994,769,160 | 0.187874 |
Pair | 574,484,133,960 | 0.471324 |
Two pair | 270,127,833,552 | 0.221621 |
Three of a kind | 47,736,401,832 | 0.039164 |
Straight | 50,797,137,096 | 0.041676 |
Flush | 30,076,271,352 | 0.024675 |
Full house | 15,829,506,000 | 0.012987 |
Four of a kind | 586,278,000 | 0.000481 |
Straight flush | 214,250,184 | 0.000176 |
Royal flush | 25,380,864 | 0.000021 |
Total | 1,218,871,962,000 | 1.000000 |
Table 3 shows the number of combinations for each hand of a second player, given that the first player has a two pair.
Table 3 — First Player has a Two Pair
Event | Pays | Probability |
---|---|---|
Less than pair | 43,652,558,880 | 0.066798 |
Pair | 270,127,833,552 | 0.413355 |
Two pair | 246,286,292,328 | 0.376872 |
Three of a kind | 31,155,189,408 | 0.047674 |
Straight | 18,549,991,152 | 0.028386 |
Flush | 14,200,694,712 | 0.021730 |
Full house | 28,751,944,680 | 0.043997 |
Four of a kind | 653,378,400 | 0.001000 |
Straight flush | 109,829,304 | 0.000168 |
Royal flush | 12,673,584 | 0.000019 |
Total | 653,500,386,000 | 1.000000 |
Table 4 shows the number of combinations for each hand of a second player, given that the first player has a three of a kind.
Table 4 — First Player has a Three of a Kind
Event | Pays | Probability |
---|---|---|
Less than pair | 7,303,757,580 | 0.054369 |
Pair | 47,736,401,832 | 0.355348 |
Two pair | 31,155,189,408 | 0.231918 |
Three of a kind | 27,586,332,384 | 0.205352 |
Straight | 3,310,535,196 | 0.024643 |
Flush | 2,606,403,900 | 0.019402 |
Full house | 12,910,316,760 | 0.096104 |
Four of a kind | 1,705,867,680 | 0.012698 |
Straight flush | 19,970,844 | 0.000149 |
Royal flush | 2,304,216 | 0.000017 |
Total | 134,337,079,800 | 1.000000 |
Table 5 shows the number of combinations for each hand of a second player, given that the first player has a straight.
Table 5 — First Player has a Straight
Event | Pays | Probability |
---|---|---|
Less than pair | 26,248,866,180 | 0.204299 |
Pair | 50,797,137,096 | 0.395362 |
Two pair | 18,549,991,152 | 0.144377 |
Three of a kind | 3,310,535,196 | 0.025766 |
Straight | 25,219,094,136 | 0.196284 |
Flush | 3,229,836,828 | 0.025138 |
Full house | 975,510,000 | 0.007593 |
Four of a kind | 43,198,800 | 0.000336 |
Straight flush | 98,961,348 | 0.000770 |
Royal flush | 9,485,064 | 0.000074 |
Total | 128,482,615,800 | 1.000000 |
Table 6 shows the number of combinations for each hand of a second player, given that the first player has a flush.
Table 6 — First Player has a Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 13,060,678,788 | 0.155206 |
Pair | 30,076,271,352 | 0.357410 |
Two pair | 14,200,694,712 | 0.168754 |
Three of a kind | 2,606,403,900 | 0.030973 |
Straight | 3,229,836,828 | 0.038382 |
Flush | 19,608,838,592 | 0.233021 |
Full house | 1,102,206,960 | 0.013098 |
Four of a kind | 50,221,200 | 0.000597 |
Straight flush | 191,762,164 | 0.002279 |
Royal flush | 23,604,264 | 0.000281 |
Total | 84,150,518,760 | 1.000000 |
Table 7 shows the number of combinations for each hand of a second player, given that the first player has a full house.
Table 7 — First Player has a Full House
Event | Pays | Probability |
---|---|---|
Less than pair | - | 0.000000 |
Pair | 15,829,506,000 | 0.219222 |
Two pair | 28,751,944,680 | 0.398185 |
Three of a kind | 12,910,316,760 | 0.178795 |
Straight | 975,510,000 | 0.013510 |
Flush | 1,102,206,960 | 0.015264 |
Full house | 11,661,414,336 | 0.161499 |
Four of a kind | 966,835,584 | 0.013390 |
Straight flush | 8,767,440 | 0.000121 |
Royal flush | 993,600 | 0.000014 |
Total | 72,207,495,360 | 1.000000 |
Table 8 shows the number of combinations for each hand of a second player, given that the first player has a four of a kind.
Table 8 — First Player has a Four of a Kind
Event | Pays | Probability |
---|---|---|
Less than pair | - | 0.000000 |
Pair | 586,278,000 | 0.125418 |
Two pair | 653,378,400 | 0.139772 |
Three of a kind | 1,705,867,680 | 0.364923 |
Straight | 43,198,800 | 0.009241 |
Flush | 50,221,200 | 0.010743 |
Full house | 966,835,584 | 0.206828 |
Four of a kind | 668,375,136 | 0.142980 |
Straight flush | 390,960 | 0.000084 |
Royal flush | 44,160 | 0.000009 |
Total | 4,674,589,920 | 1.000000 |
Table 9 shows the number of combinations for each hand of a second player, given that the first player has a straight flush.
Table 9 — First Player has a Straight Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 85,751,460 | 0.110699 |
Pair | 214,250,184 | 0.276582 |
Two pair | 109,829,304 | 0.141782 |
Three of a kind | 19,970,844 | 0.025781 |
Straight | 98,961,348 | 0.127752 |
Flush | 191,762,164 | 0.247552 |
Full house | 8,767,440 | 0.011318 |
Four of a kind | 390,960 | 0.000505 |
Straight flush | 44,354,840 | 0.057259 |
Royal flush | 596,856 | 0.000770 |
Total | 774,635,400 | 1.000000 |
Table 10 shows the number of combinations for each hand of a second player, given that the first player has a royal flush.
Table 10 — First Player has a Royal Flush
Event | Pays | Probability |
---|---|---|
Less than pair | 10,532,592 | 0.117164 |
Pair | 25,380,864 | 0.282336 |
Two pair | 12,673,584 | 0.140981 |
Three of a kind | 2,304,216 | 0.025632 |
Straight | 9,485,064 | 0.105512 |
Flush | 23,604,264 | 0.262573 |
Full house | 993,600 | 0.011053 |
Four of a kind | 44,160 | 0.000491 |
Straight flush | 596,856 | 0.006639 |
Royal flush | 4,280,760 | 0.047619 |
Total | 89,895,960 | 1.000000 |
The following table shows the number of combinations for each hand of player 1 by the winner of the hand.
Table 11 — Winning Player by Hand of Player 1 — Combinations
Player 1 | Win | Tie | Loss | |
---|---|---|---|---|
Less than pair | 76,626,795,600 | 11,681,317,560 | 395,983,710,240 | 484,291,823,400 |
Pair | 496,857,988,764 | 38,757,694,752 | 683,256,278,484 | 1,218,871,962,000 |
Two pair | 419,896,266,012 | 34,054,545,168 | 199,549,574,820 | 653,500,386,000 |
Three of a kind | 97,664,829,948 | 4,647,370,128 | 32,024,879,724 | 134,337,079,800 |
Straight | 103,685,076,072 | 15,662,001,240 | 9,135,538,488 | 128,482,615,800 |
Flush | 71,523,195,288 | 2,910,219,176 | 9,717,104,296 | 84,150,518,760 |
Full house | 62,810,500,464 | 5,179,382,208 | 4,217,612,688 | 72,207,495,360 |
Four of a kind | 4,240,864,800 | 198,204,864 | 235,520,256 | 4,674,589,920 |
Straight flush | 734,237,144 | 35,247,960 | 5,150,296 | 774,635,400 |
Royal flush | 85,615,200 | 4,280,760 | - | 89,895,960 |
Total | 1,334,125,369,292 | 113,130,263,816 | 1,334,125,369,292 | 2,781,381,002,400 |
The following table shows the probability for each hand of player 1 by the winner of the hand. The bottom row shows that each player has a 47.97% chance of winning and a 4.07% chance of a tie.
Table 12 — Winning Player by Hand of Player 1 — Probabilities
Player 1 Hand | Player 1 | Tie | Player 2 | Total |
---|---|---|---|---|
Less than pair | 0.027550 | 0.004200 | 0.142369 | 0.174119 |
Pair | 0.178637 | 0.013935 | 0.245654 | 0.438225 |
Two pair | 0.150967 | 0.012244 | 0.071745 | 0.234955 |
Three of a kind | 0.035114 | 0.001671 | 0.011514 | 0.048299 |
Straight | 0.037278 | 0.005631 | 0.003285 | 0.046194 |
Flush | 0.025715 | 0.001046 | 0.003494 | 0.030255 |
Full house | 0.022582 | 0.001862 | 0.001516 | 0.025961 |
Four of a kind | 0.001525 | 0.000071 | 0.000085 | 0.001681 |
Straight flush | 0.000264 | 0.000013 | 0.000002 | 0.000279 |
Royal flush | 0.000031 | 0.000002 | 0.000000 | 0.000032 |
Total | 0.479663 | 0.040674 | 0.479663 | 1.000000 |
Written by: Michael Shackleford
The following Texas Holdem odds table highlights some common probabilities that you may encounter in Hold'em. It is not vital that you learn these probabilities, but it is useful to be aware of the chances of certain situations arising.
Texas Hold'em odds chart.
Situation | Percentage Odds | Ratio Odds |
---|---|---|
Preflop Probabilities: | ||
Dealt AA. | 0.45% | 220 to 1 |
Dealt AK. | 1.2% | 82 to 1 |
Dealt AKs. | 0.3% | 331 to 1 |
Dealt 72o. | 0.9% | 109 to 1 |
Being dealt AA vs. KK (heads up). | 0.004% | 22,559 to 1 |
Dealt a pocket pair. | 6% | 16 to 1 |
Dealt suited connectors. | 4% | 24 to 1 |
Flop Probabilities: | ||
Flopping a pair. | 32.4% | 2.2 to 1 |
Flopping a set (with pockets). | 11.8% | 7.5 to 1 |
Paired Board: | ||
2 players, probability of trips. | 17% | 4.8 to 1 |
3 players, probability of trips. | 26% | 3 to 1 |
4 players, probability of trips. | 34% | 2 to 1 |
5 players, probability of trips. | 43% | 1.4 to 1 |
How to use Texas Hold'em odds.
The odds in this Texas Hold'em odds table are unlikely to directly help your overall strategy, but they are pretty interesting nonetheless. The Texas Hold'em odds for each of the different situations have been given in both percentage and ratio odds, so use whichever format you feel comfortable with.
Other poker odds charts.
For more useful odds charts that you can use for when you are working out whether or not to call when on a drawing hand, use the following tables:
Texas Holdem Poker Full House Games
Both of these tables give the odds for completing your draw depending on how many outs you have. You can find out more on how to work out odds and all that mathematical stuff in the article on pot odds.
Texas Holdem Poker Full House Poker
Go back to the poker odds charts.
Can You Afford Not To Use
Poker Tracker 4?
“I wouldn’t play another session of online poker without it”
Texas Hold'em Full House Probability
“I play $25NL, and in under 1 week PT4 had paid for itself”
Texas Holdem Poker Sites
Comments